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School-closure policies are considered one of the most promising
nonpharmaceutical interventions for mitigating seasonal and pan-
demic influenza. However, their effectiveness is still debated, pri-
marily due to the lack of empirical evidence about the behavior
of the population during the implementation of the policy. Over
the course of the 2015 to 2016 influenza season in Russia, we per-
formed a diary-based contact survey to estimate the patterns of
social interactions before and during the implementation of reac-
tive school-closure strategies. We develop an innovative hybrid
survey-modeling framework to estimate the time-varying network
of human social interactions. By integrating this network with an
infection transmission model, we reduce the uncertainty surround-
ing the impact of school-closure policies in mitigating the spread
of influenza. When the school-closure policy is in place, we mea-
sure a significant reduction in the number of contacts made by stu-
dents (14.2 vs. 6.5 contacts per day) and workers (11.2 vs. 8.7 con-
tacts per day). This reduction is not offset by the measured increase
in the number of contacts between students and nonhousehold
relatives. Model simulations suggest that gradual reactive school-
closure policies based on monitoring student absenteeism rates are
capableofmitigatinginfluenzaspread.Weestimatethatwithoutthe
implemented reactive strategies the attack rate of the 2015 to 2016
influenzaseason would have been33% larger. Ourstudy sheds light
onthesocialmixing patternsofthe populationduringtheimplemen-
tation of reactive school closures and provides key instruments for
future cost-effectiveness analyses of school-closure policies.

mixing patterns | school-closure strategies | influenza | network science

O ne of the key lessons learned from the 2009 HIN1 influenza
pandemicwas the pivotal role of young individuals in spread-
ing the infection. School-age children were the most affected age
group (1-4) and the most susceptible to infection (5-7). More-
over,influenzatransmissionatthepopulationlevelwassubstantially
lower when schools were closed (e.g., due to regular holidays) (8-
13). For this reason, as well as due to the time consuming process
ofvaccinedevelopmentandlarge-scaledistribution,school-closure
policiesareconsideredbyhealthofficialsaroundtheworldasaviable
strategy to mitigate the spread of anew influenza pandemic (14).
Countries like Japan, Bulgaria, and Russia have already used
school-closure policies to mitigate influenza spread (15), demon-
strating that logistic and social challenges of school-closure
strategies can be overcome. Nonetheless, the effectiveness of
school-closure policies as nonpharmaceutical interventions for
mitigating influenza epidemics and pandemics is still disputed
(14, 15). Indeed, mathematical modeling studies are struggling
to provide public health officials with a definitive indication in
favor of school-closure policies, despite leveraging high resolu-
tion data on social interactions (16), analyzing detailed influenza
transmission datasets (17), and using state-of-the-art modeling
approaches (18-24). The lack of a clear indication is mostly due
to a shortage of data about the behavior and mixing patterns of
the population as a whole while such strategies are in place.
Previous studies have focused on the analysis of the contact
patterns of the population during weekends and holidays. In
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particular, the analysis of data from a large-scale survey on
human-mixing patterns relevant for the transmission of infec-
tious diseases conducted in eight European countries (25) shows
that the reproduction number of airborne infectious diseases may
decrease up to 20% from workdays to weekends and from regular
to holiday periods (26). A modeling study based on the same data
found a mitigation effect of the Christmas holidays on influenza
spread (27). Similarly, the analysis of influenza sentinel data
revealed a 24% reduction in child-to-child transmission during
school holidays compared with in-school days (17). Other studies
have focused on the student population only. They have high-
lighted a reduction of up to 65% in face-to-face conversational
contacts recollected by secondary school students during periods
when schools are closed (28), provided an accurate description
of the social interactions of students at school (16), and clari-
fied the patterns of influenza transmission between students (29).
However, to estimate the effect of reactive school-closure strate-
gies, specific data on population-level human-mixing patterns
collected precisely during the implementation of such policies
are needed. In fact, it is far from guaranteed that during the
application of a policy entailing short-lasting unscheduled school
closures, the (student and nonstudent) population will behave in
the same way as during weekends or vacation periods.

In Russia, gradual school-closure policies are performed every
year to mitigate the spread of seasonal influenza (a description
of the policy can be found in the next section). This offers us
the invaluable chance to directly measure the variation in human
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contact patterns caused by the policy. To do so, we performed a
diary-based contact survey (25, 30) in the city of Tomsk, Russia
during the 2015 to 2016 influenza season by recruiting students
of two schools and their household members. Data were col-
lected when the schools were regularly open and when students
could not attend school because their classes were closed as a
consequence of the school-closure policy.

By integrating the collected contact survey data with publicly
available micro and macro sociodemographic data, we develop a
highly detailed time-varying contact network based on an innova-
tive hybrid survey-modeling framework. This approach enables
us to perform computer simulations of the social interactions
between individuals to estimate human-mixing patterns at the
population level and simulate influenza spread. Indeed, this goes
beyond the state-of-the-art data-driven, network, and multiplex
network models of infectious diseases transmission, which are
based either on an homogenous mixing assumption within entire
populations or within the particular settings where transmission
can occur (e.g., households, schools) (18, 19, 23, 31, 32). Our
results provide evidence of the influenza mitigation impact of
school-closure policies.

Results

Contact Pattern. We perform a diary-based contact survey, to
quantify human-mixing patterns during regular school/work days
and when the school-closure strategy is implemented. The
school-closure strategy implemented in Russia works as follows.
Once the influenza epidemic has been declared, students show-
ing acute respiratory infection (ARI) symptoms are not allowed
to enter the school and the number of absent students is moni-
tored daily. If the fraction of absent students of a class exceeds a
certain threshold, then the class is closed for 1 wk; if the fraction
of absent students of the entire school exceeds a certain thresh-
old, then the entire school is closed for 1 wk. A description of the
policy is reported in Box 1. An overview of the survey methodol-
ogy is reported in Materials and Methods, and details are reported
in SI Appendix, section 1. We analyzed a total of 7,009 contacts,
reported by the 450 study participants (see Table 1). A contact
is defined as a two-way conversation of at least five words in the
physical presence of another person (25, 30).

We find that the number of contacts is highly dependent on
the activity status of the participant, which is categorized as stu-
dent, worker, or not employed nonstudent (for simplicity also
referred as not employed—e.g., stay-at-home parents and retired
individuals). The number of contacts also heavily depends on
the school/class status (i.e., either regularly open or closed as a
result of the school-closure policy). Results are summarized in
Table 1 and Fig. 14. When the school-closure strategy is not in
place, students are the category showing the highest number of
contacts per day with 14.2 contacts (95% CI: 13.0 to 15.3), fol-
lowed by workers with 11.2 contacts (95% CI: 9.8 to 12.6), and
not employed nonstudents with 6.9 contacts (95% CI: 5.2 to 8.5).
When the school-closure strategy is in place, the estimated num-
ber of contacts highly differs for students not attending school
as a consequence of the strategy and for their household mem-
bers. In particular, students and workers show a statistically
significant decline in their number of contacts. For students, the
average daily number of contacts drops to 6.7 (95% CI: 5.9 to
7.5; 53% reduction), becoming similar to the value observed for
not employed nonstudents. For workers, it drops to 8.7 contacts
per day (95% CI: 7.3 to 10.1; 19% reduction). This reduction is
caused by two factors: first, the number of workers reporting zero
contacts at work increased by 23.2%; second, for the workers
who reported at least one contact in the workplace, the num-
ber of contacts decreased by 1.5 contacts per day. Not employed
individuals show a slight (not statistically significant) reduction
in their number of contacts as well.
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Box 1. Key points of the Russian regulations for reducing
influenza burden in educational institutions. The full text of
the official regulation is available online at www.rg.ru.

By monitoring the weekly incidence of acute respiratory
infections (ARI), the regional Chief State Sanitary Doctor
declares the start of the influenza epidemic. During the
epidemic season the following strategies are implemented:

« Daily screening of all students (“morning filter”) and
school workers.

- Individuals showing ARI symptoms are not allowed to
enter the school territory.

» Daily monitoring of the number of absent students.

- The teacher in charge of a class calls the family of each
absent student and verifies whether the student was
diagnosed with ARI by a general practitioner.

> If more than 20% of the students in the class are
diagnosed with AR, all students of that class are not
allowed to attend school for 7 days.

- If more than 20% of the students of the entire school are
diagnosed with AR, the school closes for 7 days.

By breaking down contacts by the age of the contacted individ-
uals (Fig. 1B), we find that the school-closure policies induced
students to significantly reduce their number of contacts with
individuals aged 0 to 18 y (75% reduction) and 19 to 59 y
(20% reduction), while simultaneously increasing contacts with
individuals aged 60 y or more (52% increase), although their
absolute value remains low (i.e., less than one contact per day).
In parallel, workers show a 26% reduction of contacts with
individuals aged 19 to 59 y.

The analysis of the locations where contacts took place and
the relationships among the contacted individuals help to explain
the aforementioned patterns (Fig. 1 C and D). In particular, the
drop in the number of contacts between students and individuals
aged 0 to 18y is mostly ascribable to the dramatic decrease in the
number of contacts with classmates (decreasing from 6.3 contacts
per day to 0.5) and schoolmates (decreasing from 1.5 contacts
per day to 0.3). Students also show a significant decrease in
the number of contacts during leisure activities (61% decrease)
and in the number of contacts with unrelated individuals (50%
decrease). On the other hand, they show a statistically significant
increase in the number of contacts at home (40% increase) and
in the number of contacts with other (nonhousehold member)
relatives (119% increase). The school-closure strategy also alters
the behavior of the adult working population. Workers who are
members of households directly affected by the school-closure
strategy show a significant decrease in the number of contacts
with work colleagues (regardless of the social setting where
the contact occurs; 35% reduction) and, in particular, contacts
taking place at the workplace (i.e., including both work col-
leagues and other individuals they can contact in the workplace
such as customers; 48% reduction). The strategy appears not
to significantly affect the contact patterns of the not employed
population.

Contact Network at the Population Level. The closure of a specific
school or class affects mixing patterns not only of the students
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Table 1. Number of contacts and sample size by characteristics of study participant

Category School/Class Open School/Class Closed
N Mean N Mean Difference
(%) (95% CI) (%) (95% CI) (P*)
Student 259 14.2 100 6.7 7.5
(57.6) (13.0 to 15.3) (55.2) (5.9t0 7.5) (<0.0001)
Adult (worker or 191 10.4 81 8.4 2.0
not employed)
(42.4) (9.3t0 11.6) (44.8) (7.2 10 9.6) (0.018)
Worker 158 11.2 70 8.7 2.5
(35.1) (9.8t0 12.6) (38.7) (7.3t0 10.1) (0.012)
Not employed 33 6.9 1 6.4 0.5
(7.3) (5.2 t0 8.5) 6.1) (4.5108.2) (0.678)
Total 450 12.6 181 7.4 5.2
(100.0) (11.7 to 13.4) (100.0) (6.7 to 8.1) (<0.0001)

*Two-sided t test.

of that school and of the members of the households where
these students live. In fact, the strategy leads to a cascade of
indirect effects that should be taken into account to general-
ize contact survey results at the population level. For instance,
we expect to observe a change in the contact pattern within a
workplace if one or more employees are members of households
having students directly affected by the school-closure strategy.
Therefore, we develop a time-varying contact network based on
a hybrid survey-modeling framework to estimate to what extent
the school-closure policy shapes the mixing patterns of the pop-
ulation. First, we develop a highly detailed synthetic population
of 515,202 agents—the number of inhabitants of Tomsk—based
on macro- and microlevel sociodemographic data on the Tomsk
Oblast population. Second, contacts between individuals (i.e.,
edges between nodes of the generated network) are simulated
as a Markov process based on the distributions of the number
of contacts by setting and relationship conditional on the activity

status of the respondent, as estimated from the contact survey.
An overview of the adopted methodology is reported in Materi-
als and Methods (see SI Appendix, section 2 for details and for a
validation of the time-varying contact network).

We consider the extreme scenario where all schools are closed
at the same time to illustrate to the maximum effect of the
school-closure policy in shaping mixing patterns of the popula-
tion. Our modeling analysis shows a reduction of about eight
contacts per day for school-age individuals and about one con-
tact per day for adults (individuals aged 25 to 54 y), while we find
no substantial variation for other age groups (Fig. 24).

By breaking down contacts by the age of contacting and con-
tacted individuals, we can visualize the mixing patterns in the
form of contact matrices by age (Fig. 2B). We find that the con-
tact matrix shows three main diagonals representing contacts
between household members. These diagonals are not affected
by the school-closure policy. The central part of the matrix (i.e.,
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Number of contacts. (A) Mean daily number of contacts by activity status of the participant (i.e., student, worker, or not employed) and school/class

status (i.e., either open or closed as a result of the school-closure policy) based on the contact survey data. The asterisks below the bars denote the level of
significance of the reduction (two-sided t test): * P < 0.05, ** P < 0.01, *** P < 0.001. (B) As in A, but split by age group of the contacted individual. (C) As
in A, but split by relation between the participant and the contact. (D) As in A, but split by location where the reported contact took place.
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contacts between individuals aged 19 to 60 y) shows a slight
reduction when schools are closed due to the decrease in the
number of contacts in the workplace. The most evident change
occurs for school-age individuals—in Russia students generally
attend the same school building from the age of 6 to 17 y. The
bottom left part of the matrix, which includes contacts between
schoolmates, drops from more than one contact per day to about
zero when all schools are closed at the same time. Even more
evident is the effect on contacts between classmates, which dom-
inates the contact matrix when schools are open and decreases
from about six to less than one contact per day when schools
are closed. A reduction in contact between school-age individu-
als and adults is rather evident as well, implying that the increase
of contacts with other relatives taking care of children during the
school closure is not enough to offset the decrease of contacts
with adults in the school setting (e.g., teachers and other school
employees), during leisure time, and on means of transportation.

The 2015 to 2016 Influenza Season. We develop a dynamical model
of influenza transmission over our time-varying contact network.
The model is at the individual-level and explicitly considers all
households, students, schools, and so on, thus allowing the mech-
anistic simulation of school-closure policies. See Materials and
Methods and SI Appendix, sections 3 and 4 for details. We vali-
date the model against empirical epidemiological and social data
collected during the 2015 to 2016 influenza season (i.e., the sea-
son when the contact survey has been conducted). A vaccination
campaign covering about 30% of the population had been car-
ried out in September to November 2015. Thereafter, influenza
started to spread in the region in early December, before the win-
ter vacations, and ended after the spring vacations. Moreover, in
the week of February 8 to February 16, 2016, extraordinary mea-
sures were implemented, including, among others, the dismissal
of children in educational institutions of the region, as well as the
prohibition of mass cultural, sport, and other events. Details are
reported in ST Appendix, section 4.4.

We use the 2015 to 2016 influenza season as a benchmark
to assess the reliability of our model. In particular, we validate
the output of the model against four temporal indicators of spe-
cial interest for this study: (i) the reported weekly incidence of
influenza cases (calculated as the weekly incidence of ARI cases
multiplied by the share of samples testing positive for influenza in
that week), (ii) the weekly incidence of ARI cases, (iii) the weekly
number of schools that are entirely closed, and (iv) the weekly
number of classes that are closed in partially open schools. The
model is able to capture the observed dynamics for all of the con-
sidered indicators (Fig. 3). In particular, the mean absolute error
for the weekly incidence of influenza cases per 10,000 individuals

Litvinova et al.

is 1.8 and all data-points fall well inside the 95% CI, except for
the week when extraordinary measures were in place (Fig. 34).
However, a lower reporting rate was likely observed during the
week when extraordinary measures were in place. The model is
also able to capture the temporal trend of the ARI incidence,
including the initial and final phase of the influenza season, char-
acterized by a negligible number of influenza cases and nearly
constant ARI incidence (of about 50 cases per 10,000 individu-
als) (Fig. 3B). We find a good agreement in the weekly number of
schools that are entirely closed (Fig. 3C) and of the weekly num-
ber of classes that are closed in partially open schools as an effect
of the reactive school-closure strategy (Fig. 3D). Moreover, we
estimate the effective reproduction number of influenza (i.e., the
average number of secondary infections generated by a typical
case) to be 1.24 (95% CI: 1.20 to 1.27), in agreement with the lit-
erature for seasonal influenza (33). We estimate that on average
one out of 3.5 influenza symptomatic cases are reported to the
surveillance system, in agreement with the values (one out of 3.1
to 3.7) found in the literature (34).

We use the calibrated model to provide a counterfactual sce-
nario where we assume that no mitigation measures were in
place during the 2015 to 2016 influenza season. Our results show
that the implemented measures had a remarkable effect in alter-
ing the temporal dynamics of the epidemic and in mitigating
influenza spread (Fig. 44). In particular, we estimate that, on
average, in the absence of any reactive mitigation strategies, the
influenza attack rate would have been 33.0% larger (Fig. 4B),
the peak week incidence of symptomatic cases would have been
17.1% larger (Fig. 4C), and the number of school days missed
per student due to ARI would have been 28.7% larger (Fig. 4D).
On the other hand, the implemented measures led students to
miss on average 7.8 school days: 5 linked to the extraordinary
measures that were in place for 1 wk and 2.8 d linked to the reac-
tive school-closure strategy (Fig. 4E). Additional counterfactual
scenarios are discussed in S Appendix, section 5.7.

Impact of School-Closure Policies. The fundamental epidemiolog-
ical parameter controlling the dynamics of the system is the
effective reproduction number R. or, if the population is fully
susceptible (as is generally the case for pandemics), the basic
reproduction number Ry. We explore a wide spectrum of values
of Ry (namely, 1.2 to 2.0), which extends beyond the maximum
value for seasonal influenza (R. usually < 1.4) (33).

In the absence of any intervention, we estimate the infection
attack rate (which includes all influenza infections, indepen-
dently whether an individual developed symptoms or not) and
the peak week incidences of symptomatic cases (an important
indicator of the maximum stress that the health system and the
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model. (C) Weekly share of schools that are entirely closed as observed in
the data and as estimated by the model. (D) Weekly number of closed classes
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work force endures as a consequence of an epidemic) to highly
depend on Ry (Fig. 54 and B). Similarly, the estimated number
of school days missed because of either influenza symptomatic
infection or other ARI increases with Ry, although the pattern is
less marked (Fig. 5C). For all analyzed values of Ry, a reactive
school-closure strategy mimicking policy currently implemented
in Russia leads to a reduction of the infection attack rate of about
8 to 10% (Fig. 54). The strategy has a much larger effect (up to
more than 30%) in reducing the peak week incidence (Fig. 5B).
We also observe a slight decrease in the number of school days
missed due to ARI (Fig. 5C, Top). The number of missed school
days per student due to the strategy is moderate for low values
of Ry (e.g., less than 4 d for Ry <1.4), while it exceeds 2 wk for
Ry > 1.8 (Fig. 5C, Bottom).

Our estimates of the impact of the school-closure policies
are quite stable with respect to variations on protocol used
to declare the start of the influenza epidemic and to varia-
tions of the infectiousness of symptomatic infectious individuals
relative to asymptomatic ones. On the other hand, the larger
the student absenteeism rate induced by noninfluenza ARI or

13178 | www.pnas.org/cgi/doi/10.1073/pnas.1821298116

the fraction of influenza infections leading to symptoms (such
as fever), the larger the effect of the policy. Results of these
sensitivity analyses are reported in SI Appendix, section 5. In
addition, we performed a sensitivity analysis on the effect of
preschools/kindergartens. This analysis shows that the estimated
effect of reactive school-closure strategies remains stable under
different hypotheses on the mixing pattern of children attending
preschools/kindergartens (SI Appendix, section 6).

Discussion

Previous studies investigated the changes in human-mixing pat-
terns during vacations (26, 27), analyzed in detail student con-
tact patterns at school (16, 28, 29), and showed the effect of
school vacations in shaping the spread of influenza (8-13). How-
ever, our results provide a quantitative assessment of human-
mixing patterns during reactive school-closure strategies and
highlight their effect in shaping the network of social inter-
actions of the (student and nonstudent) population. We find
that the policy induces a marked drop in the overall num-
ber of daily interactions. Indeed, this is induced by the dra-
matic reduction of the number of contacts of students with
their classmates, other schoolmates, and other unspecified indi-
viduals, along with the moderate decrease in the number of
contacts between workers and their colleagues. This combined
decrease is not offset by the mild increase in the number of con-
tacts between students and nonhousehold relatives, suggesting
that school-closure policies may contribute to limiting influenza
spread.

We perform a modeling study entailing the measured behav-
ior of students and other members of their families in the days
when a reactive school-closure strategy is implemented. Our
results quantify the effect of the reactive school-closure pol-
icy implemented during the 2015 to 2016 influenza season in
Tomsk. We find that the implemented measures greatly reduced
the impact of the epidemic (one out of three cases is estimated
to be averted). More generally, we find that for values of the
reproduction number typical of seasonal influenza (i.e., up to
1.4), the reactive school-closure policy has a positive mitiga-
tion effect at a relatively moderate number of additional missed
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not accounting for the interventions. Note that both scenarios account for
winter and spring school vacations. (B) Estimated influenza clinical attack
rate (which accounts for all symptomatic cases of influenza) in the two
aforementioned scenarios. (C) As in B, but for the peak week incidence of
reported influenza cases. (D) As in B, but for the number of school days
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Impact of school-closure policies. (A) Estimated mean infection attack rate of an influenza epidemic for different values of Ry when the epidemic

is left untreated and when the Russian school-closure policy is implemented. The small vertical lines represent 95% Cl. Bottom shows the estimated mean
percentage increase when the policy is implemented. Vertical lines represent standard errors. (B) As in A, but for the peak week incidence of symptomatic
cases. (C) As in A, Top, but for the number of school days missed per student due to influenza infection or other ARI over the entire course of the influenza
season. Bottom shows the estimated number of school days missed per student due to the school-closure policy.

school days per students (generally lower than 4 d). Additional
work is needed to identify the optimal school-closure policies
(e.g., for how long classes/schools have to close, which student
absenteeism thresholds triggering the closures to use) and under
which circumstances reactive school closures are cost-effective.
In particular, such a modeling exercise should take into account
all direct and indirect costs associated with the illness such as
the cost of the treatment (including rare but expensive com-
plications), the risk of death, and the loss of human capital
(e.g., measured as school days missed for student and loss of
productivity for workers) (35).

The growing number of contact surveys performed across the
globe (25, 30, 36-44) and the availability of detailed micro-
and/or macro-level socio-demographic data for nearly every
country of the world allow the extension of the introduced
modeling framework to several other countries. Moreover, the
definition of contact that we adopted (i.e., holding a conversation
in the physical presence of another) is the general standard for
the analysis of airborne infectious diseases. As such, our frame-
work has a much wider scope than the study of influenza in one
specific region.

Finally, as there are no available data to compare our results
with, we must remark that it is impossible to know to what extent
our findings on mixing patterns during the implementation of
the school-closure policy applies to other locations and coun-
tries. For instance, the way workers may be taking time off from
work is culturally specific and the population sampled to perform
the contact survey may not be representative for other locations.
As a consequence, it is also unclear to what extent the effect of
the reactive school-closure policy implemented in Russia would
translate to another country.

Conclusion

To provide health decision makers with evidence in favor of or
against school-closure policies for the mitigation of influenza
pandemics and epidemics, comprehensive modeling analyses
of alternative types of school-closure strategies (e.g., reactive
school closure at the city neighborhood level, strategies solely
based on monitoring ARI incidence rates) should be conducted
along with an economic analysis of the direct and indirect costs
of the policies. Our work, nonetheless, provides (i) empirical
evidence about the behavior of the (student and nonstudent)
population during the implementation of the school-closure
strategies and (i) a hybrid survey-modeling approach to esti-
mate human-mixing patterns and simulate the spread of infec-
tious diseases with an unprecedented level of detail and whose
potential in terms of supporting the health decision-making
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process goes well beyond the assessment of school-closure
strategies.

Materials and Methods

Summary of Survey Methodology. Two schools in Tomsk, Russia were will-
ing to participate in this study and participants were recruited among the
students of these two schools and the adult members of their households.
One of the schools follows the typical organization of the Russian school
system: an entire 11-y cycle with students essentially aged 6 to 17 y. The sec-
ond school covers a 9-y cycle with students essentially aged 6 to 15 y. Out
of the 259 participating students, 234 were recruited from the 11-y cycle
school (90.3%) and 25 from the 9-y cycle school (9.7%). The difference in the
number of contacts of students between the two schools is not statistically
significant (two-side t test, P = 0.61): on average students of the 11-y cycle
school have 14.1 (95% Cl: 12.9 to 15.3) contacts per day and students of the
9-y cycle school have 15.0 (95% CI: 11.7 to 18.3) contacts. According to Tomsk
official administrative records, 80% of the schools of the city follow the 11-y
cycle and cover 93% of city school students, while 10% follow the 9-y cycle
(4% of city students). Special higher education preparation schools comprise
the remaining 10% (3% of city students). The two schools participating in
the study are representative for their type of educational cycle in terms of
total number of students, average class size, and student-to-teacher ratio (S/
Appendix, section 1.2). Moreover, the territories assigned to the two schools
have typical characteristics (e.g., household size and national identity) of the
city population (S/ Appendix, section 1.2).

All participants were asked to fill in a contact diary. The contact diary was
divided into the following three sections.

i) Basic information. We collected information on the activity status (stu-
dent, worker, or not employed) and age of the study participant, and
number and age of all household members. Note that no other infor-
mation (e.g., sex, education level) of the participants were collected due
to concerns about individual identifiability brought up at an introduc-
tory meeting with the schools’ principals held during the study design
phase.
Contact pattern for a regular school/work day. Student participants
were instructed to fill in this section on a day (from Monday to Friday)
when they regularly attended school. Worker participants were similarly
instructed to fill in this section on a day when they did not miss work. We
collected information about the number and characteristics of each con-
tact made during that day. In particular, for each contacted individual,
participants reported the age (or the age bracket, if the exact age of the
contacted person was unknown), setting where the contact took place
(home, school, workplace, leisure, means of transportation, other), and
relationship with the contacted individual (household member, other
relative, classmate, other schoolmate, work colleague, other).
iiif) Contact pattern when the strategy is in place. Student participants were
instructed to fill in this section on a day (from Monday to Friday) when
they do not attend school because their classes or the entire school are
closed as a consequence of the school-closure policy. Nonstudent par-
ticipants filled in this section of the diary on a day when the student
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member of their households could not attend school as a consequence
of the school-closure strategy.

Before the start of the data-collection phase, study participants were
orally trained on how to fill in the diary. Detailed information on the
contact diaries can be found in S/ Appendix, section 1, along with the orig-
inal template of the diary (S/ Appendix, section 7). Data were collected
within the research initiative ContactPatterns (www.contact-patterns.org)
and individual contact diaries are openly available from ref. 45.

Ethics Statement. In accordance with Russian regulations, all participants (or
parents/legal guardians for underage individuals) signed an informed con-
sent agreement. The study was approved by the Ethical Committee of the
Siberian State Medical University (Protocol 5168/1).

Synthetic Population. We leverage public sources of macrolevel (e.g., cen-
sus) and microlevel (e.g., household surveys) data to construct a synthetic
population of the city of Tomsk. Each agent of the synthetic population
corresponds to an individual in the real population. Each agent has an asso-
ciated age, belongs to a certain household (whose size and composition is
based on actual data), and attends a certain school if she/he is a student or
a workplace if she/he is a worker. School and workplace sizes are derived
from actual data. Students of each school are further stratified in grades
and classes depending on their age, and the proper number of teachers is
assigned to each school to comply with teacher-to-student ratio data. The
synthetic population enables us to characterize four different social settings
where contacts can occur (i.e., home, school, workplace, general commu-
nity/other setting) and six relations (i.e., household member, schoolmate,
classmate, teacher, work colleague, other). The resulting synthetic popula-
tion has been validated against independent data. Details in S/ Appendix,
section 2).

Time-Varying Contact Network. We use the developed synthetic population
to perform stochastic simulations on the daily contacts between individu-
als. This allows us to generalize the results of the survey, which, by design,
includes only households having students.

In particular, we leverage the contact survey data to estimate distributions
of the daily number of contacts between individuals conditional on the
activity status of the individual, the setting where the interaction occurs (we
consider the four settings available in the synthetic population), and the rela-
tionship with the contacted individual (we consider the five relations available
in the synthetic population, where “other individuals” are further divided
intoindividualsaged 0to 17 and 18+y). Theresulting conditional distributions
can be denoted as B(e;/, r), where e = {student, worker, not employed}
represents the activity status of the individual responsible for the
contact, /= {home, school, workplace, general community} represents
the setting where the contact occurs, and r= {household member,
schoolmate, classmate, teacher, work colleague, other0-17, other18+} repre-
sents the relationship to the contacted individual. Note that the class worker
includes the special case of teachers, for which different distributions are
used.

At each time step of the simulation (corresponding to 1 d) and for
each individual, we stochastically determine the contacts (i.e., the edges
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of the network) with individuals in each setting and for each relation by
performing a random sampling from the proper conditional distributions.
For instance, if agent i is a worker, then we sample the number of con-
tacts that i has with his work colleagues in the general community from
B(worker; general community, work colleague). Basically, this Markov pro-
cess defines a time-varying network of contacts. Details are reported in S/
Appendix, section 2.

Influenza Transmission Model. On top of the time-varying contact network,
we develop a mechanistic model of influenza transmission at the individ-
ual level. The model enables us to simulate the diffusion of influenza in the
population and estimate the impact of school-closure policies in mitigating
influenza spread. Briefly, influenza transmission is simulated as a stochastic
SLIAR (susceptible, latent, infectious symptomatic, infectious asymptomatic,
removed) model. Essentially, given an edge between a susceptible node i
and an infectious (either symptomatic or asymptomatic) node j, the suscep-
tible individual can acquire the infection with probability p; = Bo(a;), where
B is the influenza transmission rate per contact, and o(a;) is the susceptibil-
ity to infection that depends on the age of the individual, a;. By sampling
from a Bernoulli distribution of probability p; we stochastically determine
whether individual i has been infected and thus she/he proceeds to the
latent compartment, or if she/he remains in the susceptible status. Latent
individuals are not able to transmit the infection and after an average time
of 1.5 d (46) (the latent period) move either to the symptomatic infectious
stage with probability p = 0.37 (47) or to the asymptomatic infectious stage
with probability 1 — p. Infectious individuals, either symptomatic or asymp-
tomatic, move to the removed stage after an average of 1.3 d, in such a way
that the generation time (i.e., the interval of time between two generations
of cases) is on average 2.8 d (48). See S/ Appendix, section 3 for details.

By analyzing seroprevalence data collected before and right after the
2009 H1N1 influenza pandemic, we estimated age-specific susceptibility to
infection rates specific for the Russian population (S/ Appendix, section 4.3).
Values of the transmission rate were determined in such a way that Ry is
in the range of 1.2 to 2 (33). Symptomatic and asymptomatic individuals are
assumed to have the same level of infectiousness. We performed a sensitivity
analysis on this parameter (S/ Appendix, section 5).

The explicit representation of each individual, class, and school allows for
the simulation of school-closure policies, including the one currently in use
in Russia (Box 1), in a mechanistic way (S/ Appendix, section 3). The simu-
lation of the school-closure policy requires a model of student absenteeism
rates induced by noninfluenza ARI over time and the identification of a
threshold for the declaration of the start of the influenza season. Such infor-
mation were derived from the analysis of the ARI and influenza data for
Russia in six seasons (S/ Appendix, section 4).
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