Рослякова Елена Петровна

МОРФОФУНКЦИОНАЛЬНОЕ СОСТОЯНИЕ СЛИЗИСТОЙ ОБОЛОЧКИ ЖЕЛУДКА У БОЛЬНЫХ ЯЗВЕННОЙ БОЛЕЗНЬЮ ЖЕЛУДКА В СОЧЕТАНИИ С ХРОНИЧЕСКИМ ОПИСТОРХОЗОМ

03.00.25 – гистология, цитология, клеточная биология

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук **Работа выполнена** в Сибирском государственном медицинском университете.

Научный руководитель:

доктор медицинских наук, профессор, Суходоло Ирина Владимировна Официальные оппоненты:

доктор биологических наук, профессор, Ильинских Николай Николаевич;

кандидат медицинских наук, Фомина Татьяна Ивановна

Ведущая организация — Новосибирская государственная медицинская академия (г. Новосибирск).

Защита состоится «___» октября 2003 г., в «____» час. на заседании диссертационного совета Д 208.096.03 при Сибирском государственном медицинском университете по адресу: 634050, г. Томск, Московский тракт, 2.

С диссертацией можно ознакомится в научно-медицинской библиотеке Сибирского государственного медицинского университета (634050, г. Томск, пр. Ленина, 107).

Автореферат разослан «_____» сентября 2003 г.

Ученый секретарь диссертационного совета

Герасимов А.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы

Хронический описторхоз (ХО) оказывает системное действие на организм человека, значительно изменяя течение заболеваний на его фоне. Поражая преимущественно органы постоянного обитания гельминта - желчевыводящие пути, печень, поджелудочную железу, ХО увеличивает частоту, изменяет клиническое течение заболеваний верхнего отдела желудочно-кишечного тракта (Карзин В.В.,1971; Родина Н.П., Павлов Б.А.,1974; Шаймарданова М.И.,1973; Яблоков Д.Д., Мосин Г.П.,1980; Яблоков Д.Д.,1979; Белобородова; Э.И. и др., 1979;1992;1996;1995;1997; Пальцев А.И.,1994; Шлычков А.В.,1987; Пальцев А.И., Мигуськина Е.И.,1999; Белялова И.Г., Мартынова В.Г.,2001; Калюжина М.И.,2000; Крылова Н.А.,) и др.

В противопаразитарном механизме реакций организма на гельминтную инвазию клетками—эффекторами являются эозинофилы (Озерецковская Н.Н.,2000; Озерецковская Н.Н.,1997). Отличительной особенностью эозинофилов является наличие в цитоплазме специфических гранул, которые содержат вещества, обладающие выраженной протеолитической активностью не только в отношении инородных субстанций, таких, как внедрившиеся паразиты, но и нормальных тканей (Dunn I.J.,1985; Holgate S.T.,1991; Busse W.W,1996; Justinich C.J.et al.,1997; Kroegel C.et al.,1994). Кроме того, эозинофилы могут экскретировать медиаторы, способные вызвать различного рода биоэффекты, существенно влияющие на функцию органов и систем.

Таким образом, имеются достаточные предпосылки, позволяющие рассматривать тканевую эозинофилию как фактор, участвующий в формировании патологии желудка при хроническом описторхозе.

Цель: оценить клеточные и тканевые механизмы взаимосвязи морфофункционального состояния слизистой оболочки желудка (СОЖ) с эозинофильной инфильтрацией СОЖ у больных язвенной болезнью желудка (ЯБЖ) в сочетании с хроническим описторхозом.

Задачи:

- 1.Изучить плотность эозинофильной, нейтрофильной, лимфоцитарной, плазмоцитарной инфильтрации и количество тканевых базофилов слизистой оболочки фундального и пилорического отделов желудка, у здоровых людей, у пациентов с ЯБЖ без описторхозной инвазии и у больных язвенной болезнью желудка в сочетании с хроническим описторхозом.
- 2.Оценить динамику изменения плотности эозинофильной инфильтрации слизистой оболочки желудка у больных в острую фазу язвенной болезни желудка и в период рубцевания.
- 3.Исследовать связь морфофункциональных изменений состояния слизистой оболочки желудка с плотностью и составом лейкоцитарной инфильтрации СОЖ у больных язвенной болезнью желудка в сочетании с хроническим описторхозом.
- 4.Изучить морфофункциональные свойства эозинофилов крови и СОЖ у больных ЯБЖ в сочетании с XO.

5.Оценить информативность некоторых показателей компьютерной морфометрии, характеризующих патоморфологические изменения СОЖ у больных ЯБЖ.

Научная новизна

Впервые выявлена взаимосвязь хронической описторхозной инвазии и характера лейкоцитарной инфильтрации СОЖ у больных ЯБЖ. Обнаружено, что патоморфологические процессы различной глубины и степени в СОЖ больных язвенной болезнью желудка, ассоциированной с ХО, как правило, сочетаются с различной плотностью и составом клеточного инфильтрата в регионе язвенного поражения.

Установлено, что если в фазу рубцевания язвенного дефекта СОЖ у больных с XO в собственной пластинке СОЖ сохраняется высокая плотность эозинофильной инфильтрации, то сроки рубцевания язвы увеличиваются.

Показано, что у больных XO в крови увеличивается фракция низкоплотностных эозинофилов, а в СОЖ тканевые эозинофилы по своим морфологическим характеристикам соответствуют низкоплотностным эозинофилам.

Предложены показатели компьютерной морфометрии, информативные в отношении оценки патоморфологических изменений в СОЖ.

Практическая значимость и реализация результатов работы

Показано, что тканевая эозинофилия СОЖ у больных ЯБЖ в сочетании с хроническим описторхозом усугубляет течение ЯБЖ и замедляет регенераторные процессы в СОЖ. В этой связи больным ЯБЖ в сочетании с ХО в период ремиссии рекомендуется проведение дегельминтизации. Предложены показатели морфологической оценки изменений слизистой оболочки желудка, которые могут быть использованы в научных исследованиях в практическом здравоохранении.

Апробация работы

Материалы диссертации были представлены и обсуждены: на второй и третьей международных конференциях «Здоровье и образование в XXI веке» - Москва, 2002; на 9-й и 10-й научно-практических конференциях «Достижения современной гастроэнтерологии» - Томск, 2001, 2002; на региональной конференции «Актуальные аспекты природноочаговых болезней» - Омск, 2000; на конференции, посвященной 100-летию со дня рождения Б.М. Шершевского -Томск, 2001; на Международной конференции «Актуальные проблемы инфектологии и паразитологии» -Томск, 2001; на конференции «Актуальные вопросы экспериментальной и клинической морфологии» - Томск, 2002; на 2-й Восточно-Сибирской гастроэнтерологической конференции и 4-й конференции терапевтов республики Хакасия – Абакан, 2002; на 3-ей научно-практической международным участием, посвященной конференции заслуженного деятеля науки РФ профессора Л.И. Геллера – 2002, г. гастроэнтерологической Восточно-Сибирской Хабаровск; 3-й конференции – Красноярск, 2003.

Основные положения диссертации, выносимые на защиту

- 1. У больных ЯБЖ в сочетании с XO глубина и степень выраженности патоморфологических изменений слизистой оболочки желудка коррелируют с высокой плотностью эозинофильной инфильтрации слизистой оболочки.
- 2. Морфофункциональные свойства эозинофилов крови и тканевых эозинофилов слизистой оболочки желудка при хроническом описторхозе отличаются от таковых у неинвазированных о. felineus пациентов.
- 3. Предложенная компьютерная технология морфометрической оценки адекватно отражает некоторые патоморфологические характеристики СОЖ.

Публикации

По материалам диссертации опубликована 18 научных работ.

Работа выполнялась на кафедре морфологии и общей патологии медикобиологического факультета СибГМУ (заведующая — д.м.н., профессор И.В Суходоло), в цитологической лаборатории патологоанатомического отделения клиник ТВМИ (заведующий — Б.В.Новицкий) и в патологоанатомическом отделении областной клинической больницы.

Весь материал получен, обработан и проанализирован лично автором.

Структура и объем диссертации

Диссертация изложена на 198 страницах, иллюстрирована 36 таблицами, 20 рисунками, содержит ведение, обзор литературы, описание методов исследования, три главы, отражающие собственные результаты, обсуждение полученных результатов и выводы. Список использованной литературы содержит 309 наименований, из них - 107 отечественных и 202 иностранных авторов.

МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ

Нами исследовался гастробиопсийный материал, полученный от 136 пациентов Областной клинической больницы г. Томска (87 женщин и 49 мужчин) в возрасте от 18 до 62 лет с язвенной болезнью желудка, находившихся на лечении в период с января 1997 года по декабрь 1999 года. У 97 человек язвенная болезнь сочеталась с хроническим описторхозом, у 39 — заболевание не сопровождалось описторхозной инвазией.

Для исследования морфофункциональных характеристик эозинофилов крови при хроническом описторхозе исследовалась венозная кровь 60 больных с хронической описторхозной инвазией, находившихся на лечении в клинике пропедевтики внутренних болезней Сибирского государственного медицинского университета в 2000 – 2001 гг. Возраст обследованных - 16 – 58 лет, из них женщин – 41, мужчин – 19 человек. Из исследования исключались пациенты с аллергическими заболеваниями, бронхиальной астмой. Контрольную группу составили 16 здоровых лиц - в возрасте 19 - 27 лет, которые были обследованы в отношении описторхозной инвазии.

Диагноз XO устанавливался при обнаружении яиц гельминтов в кале и (или) желчи. Диагноз описторхоза отвергался после трехкратной копроовоскопии, исследовании желчи и при отрицательных серодиагностических пробах. На основании анамнеза была установлена

примерная давность описторхозной инвазии — у 60% она оказалась длительностью более 10 лет, и у 40 % - от двух до 5 лет.

Эозинофилией крови считали количество клеток - 0.350×10^{-6} /л (в дальнейшем – 0.350 Гига/л, 0.350Г/л) и более или 5 % и более в лейкоцитарной формуле (Хэм А., Кормак Д.,1983). Отвергали наличие эозинофилии у больных язвенной болезнью желудка после 2-х кратного исследования крови в течение 2 – 3 недель.

Гистологические и цитологические методы исследования слизистой оболочки желудка

4 — 6 гастробиопсийных образца, полученных из края язвенного дефекта от каждого больного ЯБЖ и контрольной группы были окрашены гематоксилин-эозином, азур-эозином (на предмет наличия Н. руlori) и зеленым прочным, основным коричневым по методу, предложенному В.Ю. Голофеевским, С.Н.Щербаком (1987) для сочетанного выявления эозинофилов и тканевых базофилов.

В каждом препарате оценивались: рельеф СОЖ, глубина ямок, степень и характер инфильтрации, наличие и выраженность отека, степень колонизации СОЖ H.pylori.

Кроме того, были оценены следующие патоморфологические изменения слизистой оболочки желудка: кишечная метаплазия (полная и неполная), гиперплазия покровно-ямочного эпителия, мукоцилиарная гиперплазия желез, дисрегенераторная гиперплазия, дисплазия СОЖ, фиброз. Все процессы были оценены полуколичественно от 0 до 3-х баллов.

В каждом препарате в 33 полях зрения (увеличение × 400) СОЖ подсчитывали количество нейтрофилов, эозинофилов, тканевых базофилов, плазмоцитов, лимфоцитов. Проводили перерасчет на площадь среза в 1мм². В эозинофилах определяли степень дегрануляции.

Исследование слизистой оболочки желудка методом компьютерной морфометрии на уровне желез желудка

Препараты СО фундального и пилорического отделов желудка фотографировали при увеличении × 400 цифровой фотокамерой на уровне желез желудка. С помощью пакета программ Adobe Photoshop 6,0 были измерены:

- общая площадь желез в 1 мм² СО фундального и пилорического отделов желудка, средняя площадь отдельной железы в мкм², межжелезистой ткани на 1 мм² СОЖ, вычислено соотношение площади желез к площади межжелезистой ткани, измерена средняя площадь эпителиоцитов в отдельной железе, вычислено соотношение площади эпителиоцитов к площади железы, для отдельной железы вычислено ядерно-цитоплазматическое соотношение, оценена интенсивность окраски ядер клеток железистого эпителия в синем спектре (по моде и медиане в относительных единицах).

Разделение эозинофилов крови на градиенте плотности перколла (Oloffson B., 1981)

Принцип метода состоит в оседании эозинофилов крови в соответствии с их плотностью в определенных участках градиента перколла. Использовали пятиступенчатый градиент.

Морфометрическое изучение эозинофилов крови и эозинофилов СОЖ

методом компьютерного анализа цифровых скенограмм

В препаратах крови окрашенных, по методике Е.В. Пигаревского, В.Н. Мезинга, 1981 и препаратах СОЖ, окрашенных по методу В.Ю. Голофеевского, С.Н. Щербака, в световом микроскопе при увеличении цифровой фотокамерой $\times 1000$ производили фотографирование эозинофилов. Скенограмму импортировали в программу Adobe Photoshop 6.0. Выделяли эозинофил, измеряли его площадь в мкм² .Выделяли ядро эозинофила. Определяли площадь В MKM^2 . Рассчитывали цитоплазматическое соотношение Эо. Выделяли цитоплазму клетки, исследовали интенсивность окраски в зеленом и красном спектре. Определяли интенсивность цвета в условных единицах по медиане и моде спектра. В каждом препарате обрабатывали не менее 25 клеток.

Статистическая обработка результатов исследований

Статистическая обработка результатов исследований проводилась методами дисперсионного, корреляционного анализа Пирсона, критерия Стьюдента. Нулевые гипотезы отвергались при достижении уровня значимости соответствующего статистического критерия р < 0,05. Критерий Стьюдента и другие параметрические методы применяли в тех случаях, когда величины показателей отвечали нормальному распределению. В противном случае пользовались непараметрическими методами – корреляциями по Спирмэну, Кендалл Тау, непараметрическим дисперсионным анализом Краскэла – Уиллиса, тестами Манна-Уитни, Вальда-Волфовица, парным анализом Вилкоксона. Биометрический анализ осуществлялся с использованием пакетов программ STATISTICA 6,0 for Windows.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

1. Патоморфологические изменения СОЖ у больных язвенной болезнью желудка в сочетании с хроническим описторхозом

целью изучения влияния описторхозной инвазии морфофункциональное состояние СОЖ при ЯБЖ, взаимосвязи патоморфоза СОЖ с лейкоцитарной инфильтрацией, обсеменением СОЖ (HP) Helicobacter pylori использована полуколичественная изменений СОЖ.

Исследована частота и степень выраженности дисрегенераторных изменений СОЖ у больных ЯБЖ. Наиболее частым проявлением этих процессов была гиперплазия покровно-ямочного эпителия - у 91,8 % больных. Затем, по убывающей, мукоцилиарная гиперплазия желез (60 %), дисрегенераторная гиперплазия (57,7 %), неполная кишечная метаплазия (38,9 %). Полная кишечная метаплазия наблюдалась только в 11,3 % случаев. Диспластические изменения СОЖ были обнаружены у 6 пациентов (8,4 %), причем эти изменения не были крайней выраженности, а относились к 1-й, 2-й степени. У значительной части пациентов в слизистой оболочке желудка наблюдался фиброз (73,2 %), преимущественно 1-й и 2-й

степени. Сравнение частоты и интенсивности патоморфологических изменений СОЖ у больных ЯБЖ в сочетании с ХО и у пациентов с ЯБЖ без сопутствующего описторхоза выявило различия. Мукоцилиарная гиперплазия желез чаще наблюдалась у больных ЯБЖ в сочетании с ХО. В то же время дисрегенераторная гиперплазия статистически достоверно наблюдалась реже у пациентов ЯБЖ на фоне ХО. У пациентов с ЯБЖ и ХО чаще наблюдались высокая степень выраженности полной кишечной метаплазии, гиперплазии покровно-ямочного эпителия, мукоцилиарной гиперплазии желез. В целом можно констатировать влияние описторхозной инвазии на процессы дисрегенерации СОЖ у больных ЯБЖ.

При компьютерном морфометрическом анализе исследована СОЖ на уровне желез. Это обусловлено тем, что состояние желез желудка характеризует большинство дисрегенераторных процессов СОЖ и межжелезистой ткани в наибольшей степени концентрируются клетки воспалительного инфильтрата. Проведена сравнительная морфометрия СО фундального и пилорического отделов желудка у больных язвенной болезнью желудка с показателями тех же отделов желудка у здоровых лиц (табл. 1). Представленные в таблице данные показывают существенные различия морфометрических показателей СОЖ здоровых людей и пациентов с ЯБЖ. Оказалось, что топография язвенного дефекта СОЖ не отражается на патоморфологии некоторых изучаемых нами процессов. Так, в СОЖ больных язвенной болезнью желудка с локализацией язвенного дефекта в фундальном и пилорическом отделах желудка по сравнению со здоровыми лицами происходят похожие изменения морфометрических показателей СОЖ. Почти в 2 раза уменьшена площадь железистой ткани на 1 мм² СОЖ, соответственно, увеличена площадь межжелезистой ткани, в 20 - 24 раза снижено соотношение желез к межжелезистой ткани. Общая площадь эпителиоцитов желудочных желез примерно в 2 раза меньше у больных язвенной болезнью желудка по сравнению с таковой у здоровых людей. В то же время, исследование отдельной железы в фундальном и пилорическом отделе желудка, выявило противоположные тенденции: в 3 раза увеличивается площадь железы, примерно в 3,5 раза увеличивается 2 раза увеличивается площадь эпителиоцитов, ядерноцитоплазматическое соотношение в клетках желез желудка.

Таблица 1 Морфометрические показатели слизистой оболочки фундального отдела желудка у больных язвенной болезнью желудка в сопоставлении со здоровыми лицами

	Морфометрические показатели СО	Пациенты с	Здоровые	
	фундального отдела желудка	ЯБЖ $(n = 38)$	(n = 10)	P
1	Площадь желез (в mm^2 на 1 mm^2	0.533 ± 0.017	0.96 ± 0.005	< 0,001
1.	СОЖ)	0,333 ± 0,017	0,70 ± 0,003	< 0,001
2.	Площадь межжелезистой ткани (в	$0,467 \pm 0,02$	0.04 ± 0.005	< 0,001
	мм ² на 1 мм ² СОЖ)			

3.	Соотношение площади желез и	$1,24 \pm 0,09$	29.8 ± 1.0	< 0,001
	межжелезистой ткани			
4.	Общая площадь эпителиоцитов	$0,42 \pm 0,011$	$0,79 \pm 0,054$	< 0,001
	желез (в мм ² на 1 мм ² СОЖ)			
5.	Средняя площадь эпителиоцитов в	0,0029 ±	$0,00078$ \pm	< 0,001
	1 железе (в мм ²)	0,0003	0,0004	
6.	Отношение площади	0.87 ± 0.008	0.95 ± 0.004	< 0,001
	эпителиоцитов желез к площади			
	железы			
7.	Ядерно-цитоплазматическое	0.326 ± 0.024	$0,123 \pm 0,013$	< 0,001
	соотношение эпителиоцитов желез			
8.	Плотность инфильтрации СОЖ			
	(клеток/мм ²):			
	эозинофилами,	310 ± 47	81 ± 16	< 0,001
	тканевыми базофилами,	16 ± 4	31 ± 10	< 0,01
	нейтрофилами,	277 ± 94	49 ± 7	< 0,001
	плазмоцитами,	634 ± 72	50 ± 12	< 0,001
	лимфоцитами	509 ± 39	238 ± 27	< 0,001

Выявилась статистическая разница в величине отношения средней площади эпителиоцитов к средней площади одной железы у здоровых и у больных язвенной болезнью желудка. Хотя абсолютные средние величины этого показателя не очень заметно дистанцируются между собой, уровень достоверности высок за счет малой величины средней ошибки.

Воспалительный процесс в СОЖ у пациентов с ЯБЖ сопровождается многократным возрастанием плотности инфильтрации слизистой оболочки лейкоцитами: плазмоцитами, нейтрофилами, эозинофилами, лимфоцитами (содержание плазмоцитов увеличено почти в 12 раз; нейтрофилов в 7,5 раз; эозинофилов примерно в 4,5 раза; лимфоцитов в 3 раза). Исключение составляют тканевые базофилы, количество которых в СОЖ у больных язвенной болезнью желудка в 2 раза меньше, чем у здоровых людей.

ядерно-цитоплазматического Проведено сравнение величины соотношения клеток фундальных и пилорических желез при различных патоморфологических процессах у больных ЯБЖ (табл. 2). Выборка данных производилась с исключением случаев сочетания конкретного патоморфологического дисрегенераторными процесса другими изменениями СОЖ. Оказалось, что для всех видов анализируемых дисрегенераторных процессов СОЖ показатель существенно ЭТОТ отличается от его величины у здоровых лиц. Полученные нами данные классическим описанием процессов дисрегенерации в совпадают с оболочке желудка наибольшие слизистой изменения цитоплазматического соотношения характерны для дисплазии, гиперплазии и меньше – для кишечной метаплазии СОЖ.

Таблица 2

Сравнительная величина ядерно-цитоплазматического соотношения клеток фундальных и пилорических желез СОЖ при различных дисрегенераторных процессах у больных ЯБЖ

№ Ядерно-цитоплазматическое

ПП	Группы сравнения	n	соотношение
			$(X \pm x)$
1.	Гиперплазия мукоцилиарная	34	0.328 ± 0.025
2.	Гиперплазия	37	$0,344 \pm 0,021$
	дисрегенераторная		
3.	Кишечная метаплазия	11	$0,280 \pm 0,026$
4.	Дисплазия	5	$0,420 \pm 0,058$
5.	Здоровые	18	$0,15 \pm 0,015$
	P	P 3 - 4	$_{4}$ <0,05; P_{1-5} <0,0001;
		P_{2-5}	<0.001 ; $P_{3-5}<0.001$; $P_{4-5}<0.01$

Таким образом, результаты данного раздела работы позволяют сделать вывод о том, что предложенные показатели компьютерной морфометрии отражают патоморфологические изменения в СОЖ у больных ЯБЖ. При патологии, в частности, при язвенной болезни желудка, они существенно отличаются от показателей, характеризующих СОЖ здорового человека.

Сравнительный анализ морфометрических показателей СОЖ у больных ЯБЖ в сочетании с XO и у пациентов с ЯБЖ без описторхозной инвазии

При статистическом сравнении средних величин показателей, характеризующих изменение СОЖ больных ЯБЖ на фоне ХО и у пациентов с ЯБЖ, без описторхозной инвазии, конечно, не предполагалось выявить существенные различия в метрических величинах признаков, относящихся к однотипным вариантам морфологических изменений. Различия выявлены при сравнении больных ЯБЖ с группой здоровых лиц. Существенно различалась плотность эозинофильной инфильтрации СОЖ у больных ЯБЖ в сочетании с ХО, у пациентов с ЯБЖ без описторхозной инвазии и здоровых у людей. При ЯБЖ в сочетании с описторхозом этот показатель значительно выше.

При сопоставлении показателей фундального отдела желудка (табл. 3) статистически значимые различия получены только по плотности эозинофильной инфильтрации СОЖ- 408 ± 58 кл/ мм² при сочетанной патологии и 209 ± 33 кл/ мм 2 у больных язвенной болезнью желудка без описторхозной инвазии (Р < 0,01). В пилорическом отделе желудка (табл. 4) у пациентов с язвенной болезнью желудка в сочетании с ХО по больными ЯБЖ без описторхозной инвазии, кроме эозинофилов, оболочка больше инфильтрирована слизистая нейтрофильными лейкоцитами -803 ± 107 кл/ мм² и 459 ± 133 кл/ мм², соответственно, (Р < 0,05). Кроме того, тканевых базофилов у пациентов с ЯБЖ на фоне описторхоза в слизистой оболочке (СО) пилорического отдела желудка оказалось больше, чем у неинвазированных o.felineus больных с язвенным дефектом СОЖ 14 ± 2 и 4 ± 1 кл/ мм² (< 0,05). Следует отметить, что плотность нейтрофильной инфильтрации СО пилорического отдела желудка у больных язвенной болезнью желудка в сочетании с ХО, так и у пациентов с ЯБЖ без глистной инвазии была выше по сравнению со степенью инфильтрации СО фундального отдела желудка у таких же групп пациентов.

Сравнение показателей компьютерной морфометрии СО фундального отдела желудка у больных язвенной болезнью желудка в сочетании с хроническим описторхозом и у пациентов с язвенной болезнью желудка

без описторхозной инвазии

писторхозной инвазии	_	_	
1 1 1	болезнь		P
фундального отдела желудка	желудка в	желудка без	
	сочетании с	описторхозно	
	_		
	(n = 31)		
Площадь желез (в mm^2 на 1 mm^2	0,51 0,02	0,52 0,02	> 0,05
СОЖ)			
	0,49 0,02	0,48 0,02	> 0,05
мм ² на 1 мм ² СОЖ)			
Соотношение площади желез и	1,04 0,1	1,08 0,11	> 0,05
межжелезистой ткани			
Общая площадь эпителиоцитов	$0,42 \pm 0,011$	$0,48 \pm 0,017$	> 0,05
желез (в мм ² на 1 мм ² СОЖ)			
Средняя площадь эпителиоцитов в	0,0029 ±	0,0029 ±	> 0,05
1 железе (в мм ²)			
Отношение площади	0.87 ± 0.008	0.84 ± 0.008	> 0,05
эпителиоцитов желез к площади			
железы			
Ядерно-цитоплазматическое	0.38 ± 0.03	0.3 ± 0.029	> 0,05
соотношение эпителиоцитов желез			
Плотность инфильтрации СОЖ			
(клеток/мм ²):			
эозинофилами,	408 ± 58	209 ± 33	< 0,01
тканевыми базофилами,	8 ± 2	14 ± 6	> 0,05
нейтрофилами,	206 ± 55	309 ± 74	> 0,05
плазмоцитами,	737 ± 86	553 ± 77	> 0,05
лимфоцитами	575 ± 44	608 ± 68	> 0,05
	Площадь межжелезистой ткани (в мм² на 1 мм² СОЖ) Соотношение площади желез и межжелезистой ткани Общая площадь эпителиоцитов желез (в мм² на 1 мм² СОЖ) Средняя площадь эпителиоцитов в 1 железе (в мм²) Отношение площади эпителиоцитов железы Ядерно-цитоплазматическое соотношение эпителиоцитов желез Плотность инфильтрации СОЖ (клеток/мм²): эозинофилами, тканевыми базофилами, нейтрофилами, плазмоцитами,	фундального отдела желудка кочетании с хо (n = 31) Площадь желез (в мм² на 1 мм² 0,51 0,02 СОЖ) Площадь межжелезистой ткани (в межжелезистой площади (в межжелезистой ткани (в межжелези и 1,04 0,1 (в меж	Морфометрические показатели СО фундального отдела желудка (в желудка (п = 31)) и (п = 19) (

Таблица 4 Сравнение показателей компьютерной морфометрии СО пилорического отдела желудка у больных язвенной болезнью желудка в сочетании с хроническим описторхозом и у пациентов с язвенной болезнью желудка без описторхозной инвазии

No		Язвенная	Язвенная	
ПП	Морфометрические показатели СО	болезнь	болезнь	P
	пилорического отдела желудка	желудка в	желудка без	
		сочетании с	опистохозно	
		XO	й инвазии	
		(n = 11)	(n = 10)	
1.	Площадь желез (в mm^2 на 1 mm^2	0.53 ± 0.04	$0,46 \pm 0,018$	> 0,05
	СОЖ)			
2.	Площадь межжелезистой ткани (в	$0,47 \pm 0,019$	$0,54 \pm 0,018$	> 0,05

	мм ² на 1 мм ² СОЖ)			
3.	Соотношение площади желез и	$1,12 \pm 0,012$	0.87 ± 0.07	> 0,05
	межжелезистой ткани			
4.	Общая площадь эпителиоцитов	$0,43 \pm 0,029$	0.39 ± 0.014	> 0,05
	желез (в мм ² на 1 мм ² СОЖ)			
5.	Средняя площадь эпителиоцитов в	$0,0030$ \pm	0,0033	> 0,05
	1 железе (в мм ²)	0,0004	0,0004	
6.	Отношение площади железистых	$0,89 \pm 0,0027$	0.88 ± 0.006	> 0,05
	клеток к площади железы			
7.	Ядерно-цитоплазматическое	$0,36 \pm 0,03$	$0,3 \pm 0,03$	> 0,05
	соотношение эпителиоцитов желез			
8.	Плотность инфильтрации СОЖ			> 0,05
	(клеток/мм ²):			
	эозинофилами,	331 ± 68	161 ± 44	< 0,05
	тканевыми базофилами,	14 ± 2	4 ± 1	< 0,05
	нейтрофилами,	803 ± 107	459 ± 133	< 0,05
	плазмоцитами,	859 ± 154	668 ± 95	> 0,05
	лимфоцитами	703 ± 69	596 ± 60	> 0,05

Выявленные различия в плотности инфильтрации СОЖ лейкоцитами у больных язвенной болезнью желудка на фоне ХО и у пациентов с ЯБЖ без описторхоза подвели к необходимости проведения анализа, который позволил бы установить отношение воспалительного инфильтрата и патоморфологических изменений СОЖ.

Проведен корреляционный анализ влияния клеточного состава воспалительного инфильтрата СОЖ на глубину и степень морфологических изменений в слизистой оболочке желудка у больных язвенной болезнью желудка. Оказалось, что у пациентов с язвенной болезнью желудка, не сочетающейся с описторхозной инвазией, на морфологические изменения СОЖ влияют нейтрофилы, лимфоциты, хеликобактерная обсемененность (указаны статистически значимые корреляции). Плотность лимфоцитарной инфильтрации СОЖ связана отрицательной корреляцией с площадью фундальных и пилорических желез, как и обсемененность СОЖ хеликобактером.

У больных ЯБЖ, сочетающейся с хроническим описторхозом, на ряд морфометрических показателей СОЖ влияют в значительной степени нейтрофилы (в частности, при увеличении их количества в СОЖ обнаруживаются меньшая площадь желез). В этой же группе обследуемых появляется достаточно сильная корреляция между плотностью нейтрофильной и эозинофильной инфильтрацией СОЖ. Это дает основание предположить, что при повышенной инфильтрации эозинофилами СОЖ создаются условия высокой активности нейтрофилов или же оба вида лейкоцитарной инфильтрации действуют в одном направлении, создавая реализуемый цитотоксический эффект, высокий отношении регенераторных процессов СОЖ.

Таким образом, при язвенном дефекте, локализованном в пилорическом отделе, наблюдалась более интенсивная нейтрофильная инфильтрация СОЖ по сравнению с язвой фундального отдела желудка. В

наибольшей степени это выражено при сочетании язвенной болезни желудка с хроническим описторхозом.

У больных язвенной болезнью желудка выявлены достоверные корреляции между клетками воспалительного инфильтрата СОЖ, в частности, между эозинофильным и нейтрофильным компонентами, в наибольшей степени, проявляющиеся при сочетании язвенной болезни желудка с ХО. У пациентов с изучаемой микст-патологией установлена связь патоморфологических изменений слизистой оболочки желудка с плотностью нейтрофильной и эозинофильной инфильтрации.

Морфофункциональная характеристика эозинофильной инфильтрация слизистой оболочки желудка у больных ЯБЖ в сочетании с ХО

Наибольшая плотность эозинофильной инфильтрации СОЖ обнаружилась у больных ЯБЖ в сочетании с ХО на фоне эозинофилии крови $-293 \pm 20 \text{ кл/мм}^2$. Эта величина статистически значимо превышала таковую у пациентов ЯБЖ с хроническим описторхозом и нормальным содержанием эозинофилов крови. Плотность эозинофильной инфильтрации СОЖ у пациентов с язвенной болезнью желудка, но без сопутствующего ХО составила $112 \pm 6 \text{ кл/мм}^2$ в краях язвенного дефекта (Р < 0,001).

В стадию обострения ЯБЖ, с исключением случаев затухающего обострения, то есть без эндоскопических признаков начала заживления язвы, в сравниваемых группах сохранялись такие же соотношения плотности эозинофильной инфильтрации. Так, при ЯБЖ наибольшее количество

эозинофилов СОЖ было обнаружено у пациентов с XO и эозинофильной реакцией крови: -347 ± 23 кл/мм², при XO без эозинофилии -177 ± 20 кл/мм² (P = 0,0001); у неинвазированных O.felineus -131 ± 19 кл/мм² (P = 0,033).

У больных ЯБЖ в сочетании с XO выявлены прямые корреляции между плотностью эозинофильной инфильтрации в области дефекта СОЖ и количеством эозинофилов в крови (R=+0,37; P= 0,022).

У больных ЯБЖ проведено сравнение плотности эозинофильной инфильтрации СОЖ в острую стадию язвенного дефекта и в фазу репарации. Установлено, что в стадию репарации (фаза красного рубца) у больных язвенной болезнью желудка на фоне ХО и эозинофилии крови, происходит снижение плотности эозинофильной инфильтрации в краевых зонах язвы с 310 \pm 22 кл/мм² до 224 \pm 31 кл/мм² (P = 0,009), но инфильтрация эозинофилами СОЖ по сравнению с больными ЯБЖ неинвазированными o.felineus остается высокой. У пациентов ЯБЖ без описторхозной инвазии, как в острую стадию ЯБЖ, так и в стадию репарации, уровень эозинофильной инфильтрации СОЖ в области дефекта был в 2 раза ниже по сравнению с группой больных ЯБЖ в сочетании с ХО. В период репарации язвы желудка плотность эозинофильной инфильтрации СОЖ выше в случае, если в острый период ЯБЖ количество эозинофилов СОЖ было высоким - в пределах 300 – 700 клеток в 1 мм². У таких пациентов ЯБЖ на фоне ХО в период репарации язвенного дефекта количество эозинофилов СОЖ снижается в среднем до 253 ± 23 кл/мм².

Если у пациентов с ЯБЖ на фоне XO плотность эозинофилов в СОЖ в острый период ЯБЖ была менее 300 клеток на 1 мм², то в период «красного рубца», количество эозинофилов (Эо) в СОЖ снижалось до 172 ± 23 кл/мм² (P = 0,044).

Таким образом, у больных ЯБЖ в сочетании с ХО в стадию репарации дефекта СОЖ наблюдается более плотность язвенного высокая эозинофильной инфильтрации области язвы, по сравнению с картиной в СОЖ пациентов ЯБЖ, неинвазированных О. felineus. Имеется зависимость плотности эозинофильной инфильтрации СОЖ в стадию рубцевания от уровня эозинофильной инфильтрации СОЖ в стадию обострения – чем выше было количество эозинофилов СОЖ в острую фазу заболевания, тем плотность эозинофильной инфильтрации СОЖ формирования рубца.

Подводя итог этого раздела исследований, можно констатировать следующее. Во-первых, V больных язвенной болезнью желудка ассоциированной с хроническим описторхозом плотность эозинофильной инфильтрации в биоптатах, полученных из края дефекта СОЖ, как в острой стадии, так и в период рубцевания язвы, значительно выше, чем пациентов с ЯБЖ, неинвазированных о. felineus. Во-вторых, наибольшее количество эозинофилов в СОЖ наблюдалось в группе пациентов с ЯБЖ, сопровождающейся гельминтной эозинофилией крови. В-третьих, у больных ЯБЖ на фоне хронического описторхоза выявлена прямая связь плотности эозинофильной инфильтрации в области дефекта СОЖ и количества эозинофилов крови.

Оценка функциональной гетерогенности эозинофилов слизистой оболочки желудка по степени дегрануляции у больных ЯБЖ

Морфологическая и, очевидно, функциональная эозинофилов может быть оценена по количеству гранул в их цитоплазме, увеличению клеток в объеме, появлению большого количества пустых вакуолей и т.д. Кроме того, эозинофилы могут морфологически существенно различаться размерами и формой, конфигурацией гранул, их структурой (Kroegel C., Dewar A., Yukawa T.et al.,1993; Dvorak A.M., Letourneau L., Login G.R.et al., 1988; Dvorac A.M., Klebanoff S.J., Henderson W.R.et al., 1985). Особая роль эозинофилов заключается в их способности повреждать ткани «хозяина» и стимулировать процессы фиброза вследствие дегрануляции и выброса в окружающие ткани цитотоксических веществ (Анаев Э.Х. и др., 1994; Гриншпун Л.Д., 1982; Чучалин А.Г., 1997; Ishii J., Naitro K., Miyata S. et al., 2000; Chung H.L., Hvang J.B., Kwon Y.D.et al., 1999; Cheng J.F., Ott N.L., Peterson E.A.et al., 1997; Levy A.M., Yamazaki Van Keulen V.P. et al., 2001). Особенно быстро эозинофилы концентрируются и дегранулируют в гастроинтестинальном тракте (Kato M., Kephart G.M., Moricawa A., Gleich G.J., 2001).

Сравнивались три группы пациентов – первая - с язвенной болезнью желудка на фоне хронического описторхоза и эозинофилией крови; вторая – с аналогичным сочетанием заболеваний, но без эозинофильной реакции крови; и третья группа включала пациентов с язвенной болезнью желудка без описторхозной инвазии. В каждом препарате СОЖ подсчитывали

процент эозинофилов по трем градациям, в зависимости от расположения гранул: недегранулированные, дегранулирующие и дегранулированные. Статистическая обработка данных не выявила значимых различий между анализируемыми группами пациентов (P>0.05). Недегранулированных клеток во всех группах оказалось меньше всего – от 13,9 до 15,1 %. Наибольшее число эозинофилов были отнесены к дегранулирующим – от 46,6 до 54,6 % и к дегранулированным – 31,2 – 39,3 %.

Хотя статистическая обработка данных не выявила значимых различий между анализируемыми группами (P>0.05), тем не менее, можно констатировать, что примерно 80% эозинофилов СОЖ относятся к дегранулированным формам.

При сравнении процентного количества «активированных» (то есть дегранулированных и дегранулирующих) эозинофилов в сравниваемых группах (первая - с язвенной болезнью желудка на фоне хронического описторхоза и эозинофилией крови; вторая – с аналогичным сочетанием заболеваний, но без эозинофильной реакции крови; и третья группа – пациенты с язвенной болезнью желудка без описторхозной инвазии не получено существенных различий.

Несмотря на то, что процентное соотношение дегранулированных и «целых» эозинофилов в СОЖ было во всех группах сравнения одинаковым, однако общее количество активированных эозинофилов на единицу площади СОЖ значительно выше при хроническом описторхозе, чем без него и тем более оно выше при ХО, сопровождаемом эозинофильной реакцией кроветворной системы.

Оказалось, что наибольшее количество активированных эозинофилов на единицу площади СОЖ наблюдается у пациентов в период обострения язвенной болезни желудка при сочетании с ХО и эозинофилией крови, в среднем, $291 \pm 11 \text{ кл/мм}^2$. Количество активированных эозинофилов оказалось меньше в группе пациентов при сочетании ЯБЖ с ХО, но без эозинофилии крови (соответственно, $149 \pm 5 \text{ кл/мм}^2$ и $105 \pm 5 \text{ кл/мм}^2$; P < 0,001). Примерно такое же количество активированных эозинофилов было выявлено и у больных ЯБЖ без описторхозной инвазии — $109 \pm 4 \text{ кл/мм}^2$. Различия статистически значимы, так как вероятность ошибки составляла менее 0,01%.

Увеличение плотности активированных эозинофилов в СОЖ создает условия, соответственно, и большей концентрации депозитов эозинофильных цитотоксических веществ в регионе, что ведет к усилению их патогенного воздействия на состояние слизистой оболочки желудка. Последнее обстоятельство мы рассматриваем как дополнительный фактор генеза язвенной болезни желудка при эозинофильной реакции организма у лиц инвазированных о. felineus.

Эозинофилы и обсемененность слизистой оболочки желудка H. pylori у больных язвенной болезнью желудка

Частота обнаружения НР при заболеваниях желудка по данным различных авторов высока: от 94,4 - 95 % при язвенной болезни двенадцатиперстной кишки до 80 - 92,78% - при язвенной болезни желудка (Araya J.C., Villaseca M.A., Roa I., Roa J.C., 2000; Kuipers E.J., Thijs J.S., Festen H.P.M., 1995).

Частота выявления HP в наших исследованиях составила 75,5 % у пациентов ЯБЖ в сочетании с XO; у больных ЯБЖ, без описторхозной инвазии - 68,8 % (P > 0,05). Исходя из современных взглядов на генез язвенной болезни желудка, как на заболевание в значительной степени инициированное HP, необходимо было выяснить как соотносится плотность эозинофильной инфильтрации СОЖ и частота обнаружения HP в слизистой оболочке при ЯБЖ в сочетании с XO.

Хорошо известно увеличение количества эозинофилов в слизистой оболочке желудка при НР-колонизации. Логично предположить, что при НР-позитивных заболеваниях на фоне ХО, таких как ЯБЖ, когда, как было показано выше, инициируется эозинофильное присутствие в СОЖ и степень эозинофильной инфильтрации СОЖ должна быть наиболее высокой. Как было отмечено ранее, у пациентов с язвенной болезнью желудка, сочетающейся с ХО, плотность эозинофильной инфильтрации СОЖ была значительно выше, чем у больных ЯБЖ, без описторхозной инвазии. Вместе с тем, обсемененность СОЖ НР у пациентов с ЯБЖ существенно не отразилась на плотности эозинофильной инфильтрации в СОЖ ни у пациентов с ЯБЖ в сочетании с хроническим описторхозом, ни у пациентов с ЯБЖ без описторхозной инвазии (Р > 0,05).

Вместе с тем, результаты корреляционного анализа соотношения эозинофильной инфильтрации c частотой и интенсивностью НРколонизации СОЖ указывают на достоверную связь этих показателей при язвенной болезни желудка, сочетанной с XO на фоне эозинофилии крови (R = +0.53; P = 0.001). В остальных группах обследуемых, то есть у пациентов ЯБЖ, сочетающейся с описторхозной инвазией, при нормальном количестве эозинофилов в крови и у больных ЯБЖ, без описторхозной статистически достоверной связи обнаружено не было. Нами также исследованы парные корреляции в иных сопоставлениях. Так, связь инфильтрацией эозинофильной СОЖ V пациентов интенсивностью и частотой НР колонизации прослеживаются также в случаях с высокой плотностью эозинофилов в СОЖ - 770 – 201 кл/мм². Причем, эта связь выявлена как в отношении общего количества эозинофилов в СОЖ (R = +0.30; P = 0.018), так и в отношении активированных эозинофилов -R = +0.32, те есть дегранулирующих (R = +0,32; P = 0,0302) и дегранулированных (R = + 0,32; P = 0,033). При плотности эозинофильной инфильтрации менее 201 кл/мм² у больных ЯБЖ в сочетании с ХО и у пациентов с язвенной болезнью желудка без описторхозной инвазии - статистически достоверная связь между количеством тканевых эозинофилов СОЖ и НР-инфицированностью СОЖ Как известно, парный корреляционный устанавливает направленности связи от объекта к объекту, он выявляет ее наличие и характер. В исследуемой системе «тканевые эозинофилы – HPобсемененность СОЖ» у больных ЯБЖ связь носит положительный характер. Следовательно, можно предполагать, что при увеличении обсемененности слизистой НР - возрастает и плотность эозинофильной инфильтрации, хотя, вероятно, возможна и другая направленность событий. предположить. что высокая плотность эозинофильной инфильтрации СОЖ создает условия, являющиеся более благоприятными

для колонизации этого региона микроорганизмами, вследствие изменения каких-то звеньев антибактериальной защиты в СОЖ.

Плотность инфильтрации СОЖ эозинофилами и ее влияние на клинико-эндоскопическую характеристику ЯБЖ в сочетании с ХО

В связи с изучаемой проблемой, безусловно, вставал вопрос — «отражается ли эозинофильная инфильтрация СОЖ на клинических проявлениях язвенной болезни желудка?».

Множественные язвы желудка наблюдались чаще у лиц с высокой плотности эозинофильной инфильтрации СОЖ в сочетании с ХО, по сравнению с пациентами без описторхозной инвазии, соответственно, 27.15% и 5.05% (P = 0.048).

Формирование «красного рубца», у пациентов с ЯБЖ и значительной эозинофильной инфильтрации СОЖ наблюдали к концу второй недели лечения только в 12,5 % случаев. При умеренной же плотности эозинофильной инфильтрации СОЖ у больных ЯБЖ в сочетании с ХО и у пациентов с ЯБЖ без описторхозной инвазии заживление к этому времени наступало соответственно у 66,7 % и 57,1 % (P = 0,0001 и P = 0,001). Следовательно, средние сроки появления «красного рубца» у больных ЯБЖ с обильной тканевой эозинофилией на фоне ХО составили 29,4 ± 1,9 дней, при умеренной тканевой эозинофилии — 18,5 ± 1,45 дней, у неинвазированных о.felineus — 19,2 ± 2,2 (P < 0,001). Таким образом, при повышенной эозинофильной инфильтрации СОЖ у пациентов с ЯБЖ в сочетании с ХО, чаще обнаруживаются множественные язвы желудка, значительно увеличиваются сроки рубцевания язвенного дефекта.

Таким образом, эозинофилия крови у больных ЯБЖ сочетающейся с XO, инициирует повышенную инфильтрацию фундального и пилорического отделов СОЖ эозинофилами в области язвенного дефекта, из которых 2/3 представлены дегранулированными, либо дегранулирующими клетками.

В фазу рубцевания язвы желудка у пациентов с ЯБЖ на фоне XO и эозинофильной реакцией на гельминт плотность эозинофильной инфильтрации СОЖ области язвенного дефекта остается высокой.

Выявлены прямые соотношения между высокой плотностью эозинофильной инфильтрации СОЖ с частотой и интенсивностью хеликобактерной колонизации СОЖ у больных ЯБЖ.

У пациентов с сочетанием язвенной болезни желудка и хронической опиисторхозной инвазии чаще возникают множественные язвы желудка, увеличивается время репарации язвенного дефекта.

Морфофункциональные свойства эозинофилов крови и тканей при XO

Изучение эозинофилов, как *in vivo*, так и *in vitro* показывает различия, касающиеся их морфологии, фенотипических и физических свойств, функционального состояния. Морфологическая гетерогенность Эо оценивается по уменьшению количества вторичных гранул, вследствие дегрануляции, увеличения клеток в объеме, появлению большого количества пустых вакуолей и т.д. (Kroegel C., Dewar A., Yukawa T.et al.,1993; Dvorak A.M., Letourneau L., Login G.R.et al.,1988). Отражением

морфофункциональных изменений, происходящих в активированных эозинофилах, является показатель плотности клеток, получаемый путем разделения клеточной взвеси на градиенте плотности с использованием некоторых жидкостных сред, например, перколла. У здоровых людей 90% эозинофилов периферической примерно крови являются нормоплотностными (Fukuda T., Gleich G.J., 1989; Prin L., Capron M., Gosset P.et al., 1986; Shult P.A., Lega M., Jadidi S.et al., 1988), при заболеваниях – аллергическом рините (Frick W.E., Sedgwick J.B., Busse W.W., 1988), бронхиальной астме (Fukuda T., Gleich G.J., 1989; Shult P.A., Lega M., Jadidi S.et al., 1988; Frick W.E., Sedgwick J.B., Busse W.W., 1988; Kloprogge E., DeLeeuw A.J., R.DeMonchy J.G., Kauffman H.F., 1989; Саликаева Ю.О., 2000), атопическом дерматите у детей (Ружицкая Е.А., Джальчинова В.Б., Чебуркин А.А., Пампура А.Н., 2000), а также при гельминтозах (Spry С.F.J., 1988; Prin L., Capron M., Gosset P. et al., 1986) преобладают увеличение количества низкоплотностных эозинофилов. появления низкоплотностных эозинофилов в крови и тканях до конца не ясен. Однако, имеющиеся данные позволяют склониться к гипотезе, что это активированные зрелые клетки (Анаев Э.Х., Черняев А.Л., Татарский А.Р., Воронина Л.М., 1994; Yukawa T., Kroegel C., Evans P., Fukuda T., Chung K.F., Barnes P.J., 1989).

В наших исследованиях группами сравнения были – пациенты с эозинофильной реакцией кроветворной системы на о. felineus и инвазированные o.felineus, но с нормальным количеством эозинофилов крови. Кроме того, была обследована группа практически здоровых лиц (табл. 5).

Таблица 5 Распределение эозинофилов периферической крови на прерывистых градиентах плотности раствора перколла у больных XO и здоровых лиц (в относительных процентах по отношению к общему количеству лейкоцитов каждой фракции), $(M \pm m)$

	Группы о			
Плотность раствора перколла	XO, эозинофилия крови (n = 26)	XO, количество эозинофилов в крови не увеличено (n = 34)	Контрольная группа (n = 16)	Р
	1	2	3	
1,070	$17,1 \pm 1,36$	$3,09 \pm 0,38$	$2,6 \pm 0,50$	$P_{1-2} < 0.0001$ $P_{1-3} < 0.0001$ $P_{2-3} > 0.05$
1,081	19,8 ± 1,1	3.9 ± 0.85	$1,2 \pm 0,32$	$P_{1-2} < 0.01$ $P_{1-3} < 0.01$ $P_{2-3} > 0.05$
1,090	$25,87 \pm 4,74$	$8,0 \pm 3,47$	$6,0 \pm 0,43$	P ₁₋₂ < 0,05 P ₁₋₃ < 0,05

				$P_{2-3} > 0.05$
1,095	$22,46 \pm 4,89$	$19,6 \pm 3,58$	$16,2 \pm 2,51$	P > 0,05
1,105	$32,36 \pm 5,22$	$23,3 \pm 3,14$	26.8 ± 3.18	P > 0,05

Статистически значимые различия в количестве эозинофилов наиболее выражены на градиентах плотности перколла— 1,070, 1,081, относящихся к низкоплотностной фракции. В группе пациентов с эозинофилией крови и ХО их было наибольшее количество, значительно меньше в группе инвазированных o.felineus, но без эозинофильной реакции. Количество низкоплотностных эозинофилов у больных ХО сопоставимо с величиной этой фракции эозинофилов у здоровых лиц. Суммарное количество низкои нормоплотностных эозинофилов, выраженное в процентах к общему количеству эозинофилов, выделяемых на всех градиентах перколла. В группе здоровых эта фракция эозинофилов была в пределах известной нормы -3.8 ± 0.21 % . У пациентов с эозинофилией крови более трети эозинофилов концентрировались на низких градиентах плотности перколла -34.6 ± 1.24 % (P = 0.001). При хронической описторхозной инвазии , в условиях отсутствия повышенной эозинофильной реакции кроветворной системы на гельминт, тем не менее, происходит репликация низкоплотностной фракции эозинофилов В значительно большем количестве, чем у здоровых субъектов -12.1 ± 0.31 % (P = 0.012). образом, при XO отмечается статистически значимое увеличение пула низкоплотностных эозинофилов, которые обладают высокой большей способностью функциональной активностью, синтезу биологически активных веществ повышенными токсическими И свойствами в отношении окружающих тканей.

Методом компьютерного анализа цифровых скенограмм эозинофилов, полученных на различных градиентах плотности, были исследованы некоторые морфометрические показатели этих клеток. В частности, измерены общая площадь клетки, площадь ядра, вычислено ядерноцитоплазматическое соотношение, определена яркость окраски ядра клетки в синем спектре, а также яркость окраски цитоплазмы в зеленом спектре. Последние два измерения позволяют косвенно оценивать количество хроматина в ядре и количество катионных протеинов в цитоплазме Эо. Проведен сравнительный анализ этих показателей между фракцией низко-и нормоплотностных эозинофилов крови (табл. 6).

Статистически значимые различия относились к морфометрическим показателям цитоплазмы Эо крови у больных ХО. Низкоплотностная фракция эозинофилов отличалась от нормоплотностных эозинофилов прежде всего большей площадью клетки и цитоплазмы. Исследования ядра Эо в синем спектре не выявило сколько-нибудь заметных отличий в эозинофилах различных фракций. Яркость цитоплазмы в зеленом спектре была значительно выше в клетках, относящихся к низкоплотностной фракции - как по моде, так и по медиане. Этот показатель может косвенно свидетельствовать об уменьшении количества гранул и появлении большего количества вакуолей в цитоплазме эозинофилов, т.е. быть показателем дегрануляции эозинофилов.

Методом компьютерной цитометрии исследованы аналогичные показатели эозинофилов, находящихся в слизистой оболочке желудка у

пациентов с ЯБЖ. Сопоставлены данные полученные от двух групп пациентов. Первую составили больные с ЯБЖ в сочетании с ХО и вторую - пациенты с ЯБЖ без сопутствующей глистной инвазии. Меньшие размеры эозинофилов, находящихся в тканях (условия сканирования, воспроизведения были одинаковы), видимо, связаны с различными физико-химическими свойствами крови и ткани СОЖ и методами приготовления препаратов (табл.7).

Таблица 6 Морфологическая характеристика денсинометрических фракций эозинофилов периферической крови при XO (компьютерный анализ цифровых скенограмм клеток)* (X±x)

		Фракции эоз	инофилов	
№ пп	Морфометрические показатели	Низкоплот	Нормоплот-	P
	эозинофилов	ностная	ностная	
		(n = 26)	(n = 34)	
1.	Площадь клетки (мкм²)	$88,4 \pm 3,4$	$59,1 \pm 1,51$	0,0012
2.	Площадь ядра $(мкм^2)$	$42,5 \pm 2,06$	27.6 ± 1.34	0,0039
3.	Площадь цитоплазмы $(мкм^2)$	$45,9 \pm 1,7$	$31,5\pm1,26$	0,0051
4	Ядерно-цитоплазматическое	$0,93\pm0,036$	0.87 ± 0.05	0,0066
	соотношение			
5.	Показатели гистограммы			
	яркость ядра (синий спектр)			
	- мода	$138,4 \pm 4,9$	140,5±1,52	> 0,05
	- медиана	$139,4 \pm 5,4$	141,5±1,47	> 0,05
6.	Показатели гистограммы			
	яркость цитоплазмы			
	эозинофилов (зеленый спектр)			
	- мода	$189,0 \pm 2,1$	$162,4 \pm 4,5$	0,0013
	- медиана	$190,4 \pm 4,8$	$123,0 \pm 4,1$	0,0151

Таблица 7 Морфометрические показатели тканевых эозинофилов СОЖ у больных ЯБЖ в сочетании с $\,$ ХО и у больных ЯБЖ без описторхозной инвазии ($M\pm m$)

		Пациенты с ЯБЖ	Пациенты с ЯБЖ	
$N_{\underline{0}}$	Морфометрические	и ХО	без описторхозной	P
ПП	показатели эозинофилов	(n=692)	инвазии	
	_		(n = 376)	
1.	Площадь клетки (мкм ²)	$59,6 \pm 0,51$	$57,5 \pm 0,57$	< 0,01
2.	Площадь ядра $(мкм^2)$	$18,9 \pm 0,12$	$18,5 \pm 0,15$	> 0,05
3.	Ядерно-			
	цитоплазматическое	$3,153 \pm 0,029$	$3,108 \pm 0,03$	< 0,05
	соотношение			
4.	Яркость окраски ядра,	$122,6 \pm 0,6$	$121,3 \pm 0,73$	> 0,05
	мода (синий спектр)			
5.	Яркость окраски ядра,	$123,1 \pm 0,6$	$121,7 \pm 0,74$	> 0,05
	медиана (синий спектр)			

6.	Яркость окраски			
	цитоплазмы, мода	$179,6 \pm 0,41$	$175,9 \pm 0,59$	< 0,001
	(зеленый спектр)			
7.	Яркость окраски			
	цитоплазмы, медиана	$158,8 \pm 0,52$	$154,0 \pm 0,79$	< 0,001
	(зеленый спектр)			

Оказалось, что средняя площадь эозинофилов СОЖ у пациентов ЯБЖ на фоне глистной инвазии больше, чем у больных ЯБЖ без описторхозной инвазии. Это происходит за счет увеличения размеров цитоплазмы. У больных ЯБЖ, инвазированных O.felineus, цитоплазма эозинофилов, находящихся в СОЖ, значительной ярче при исследовании ее в зеленом спектре. Вполне вероятно, что это связано с более активным выбросом клетками гранул Эо в СОЖ у пациентов ЯБЖ, эозинофильная реакция организма которых, обусловлена описторхозной инвазией. Таким образом, эозинофилы СОЖ у пациентов с ЯБЖ в сочетании хроническим описторхозом имеют морфологические характеристики, тождественные признакам низкоплотностных эозинофилов крови.

В процессе исследования препаратов СОЖ больных ЯБЖ мы обратили внимание на интересный факт. У ряда пациентов с язвенной болезнью желудка в сочетании с ХО наблюдалась массовая миграция эозинофилов из кровеносных сосудов СОЖ в собственную пластинку. Нам была предоставлена уникальная возможность сравнить морфофункциональные эозинофилов крови ткани. Оказалось, И внутрисосудистых эозинофилов были недегранулированными, а у 7% наблюдались только начальные признаки дегрануляции - в цитоплазме единичные «пустоты». Полностью дегранулированных эозинофилов в крови мы не обнаружили. В собственной пластинке СОЖ у тех же больных, основная масса эозинофилов относилась к группам дегранулирующих, дегранулированных (83%). Это наблюдение указывает, что процесс дегрануляции эозинофилов в основном происходит в тканях и опровергает утверждение некоторых исследователей, что дегрануляция эозинофилов, наблюдаемая в гистологических препаратах, является неизбежным дефектом приготовления препарата

С помощью компьютерной морфометрии нами проведено исследование эозинофилов, находящихся в кровеносных сосудах СОЖ и тканевых эозинофилов в СОЖ у одних и тех же пациентов с ЯБЖ в сочетании с ХО (табл.8)

Оказалось, что размеры самих клеток, их ядер в крови и тканях существенно не различаются. Вместе с тем, при фотометрической оценке плотности цитоплазмы в красном спектре поглощение светового потока в тканевых эозинофилах значительно меньше, чем в эозинофилах крови.

Таблица 8

Морфометрические характеристики внутрисосудистых эозинофилов и эозинофилов собственной пластинки СОЖ у больных ЯБЖ в сочетании с XO

Морфометрические	Эозинофилы в	Эозинофилы в
показатели эозинофилов	кровеносных сосудах	собственной пластинке
	COЖ (n = 183)	COЖ (n = 98)

Площадь клетки (мкм ²)	60,3	63,2
Площадь ядра $(мкм^2)$	19,9	19,7
Мода ядра (синий спектр)	127,0	131,6
Медиана ядра (синий спектр)	127,0	131,8
Мода цитоплазмы (красный спектр)	88,9*	136,1*
Медиана цитоплазмы (красный спектр)	86,6*	134,2*

*- P < 0.001

Вероятно что, различия в интенсивности окраски цитоплазмы клеток связаны с выбросом веществ из эозинофилов, интенсивно происходящем вне кровеносных сосудов СОЖ, вследствие чего уменьшается степень поглощения проходящих световых лучей в цитоплазме этих клеток, расположенных в собственной пластинке СОЖ, и показатель фотометрии становится выше. Поскольку процесс дегрануляции эозинофилов происходит в собственной пластинке, в строме СОЖ увеличивается концентрация биологически активных и цитотоксических веществ, продуцируемых эозинофилами.

Таким образом, у больных XO антигельминтная эозинофильная реакция организма сопровождается увеличением в крови низкоплотностной субпопуляции Эо. Увеличение низкоплотностной фракции эозинофилов в крови больных XO сопровождается повышенным выделением цитотоксических протеинов, обладающих протеолитической активностью не только в отношении инородных субстанций, но и собственных тканей.

Низкоплотностные эозинофилы крови при XO отличаются от нормоплотностных большей площадью клетки и повышенной яркостью цитоплазмы в зеленом спектре.

Тканевые эозинофилы в СОЖ у пациентов с ЯБЖ, сочетающейся с ХО, характеризуются средними морфометрическими параметрами, сопоставимыми с характеристиками низкоплотностных эозинофилов. Это обстоятельство может указывать на увеличение пула эозинофилов низкой плотности в СОЖ пациентов с данной патологией.

Выводы

- 1. У пациентов с ЯБЖ в сочетании с ХО лейкоцитарный инфильтрат слизистой оболочки фундального и пилорического отделов желудка характеризуется повышенным содержанием эозинофилов, по сравнению с больными ЯБЖ без описторхозной инвазии.
- 2. У больных ЯБЖ, ассоциированной с XO, плотность эозинофильной инфильтрации СОЖ как в острой стадии, так и в период рубцевания, значительно выше, чем у больных ЯБЖ без описторхозной инвазии.
- 3. У больных ЯБЖ в сочетании с ХО наибольшее влияние на морфофункциональное состояние СОЖ оказывают эозинофильная, нейтрофильная инфильтрация и НР-обсемененность. Эозинофильная инфильтрация СОЖ коррелирует с дисплазией и фиброзом СОЖ. В этой же группе больных выявлена связь между эозинофилами и нейтрофилами СОЖ.

- 4. Морфофункциональные свойства эозинофилов у больных хроническим описторхозом изменяются: в крови увеличивается содержание эозинофилов низкой плотности, а в слизистой оболочке желудка тканевые эозинофилы приобретают морфологические характеристики, тождественные низкоплотностным эозинофилам крови.
- 5. Значения показателей, получаемых при компьютерной морфометрии слизистой оболочки фундального и пилорического отделов желудка: площадь желез, площадь межжелезистой ткани, отношение площади желез к площади межжелезистой ткани, общая площадь эпителиоцитов желез, средняя площадь железы, средняя площадь эпителиоцитов в одной железе, отношение средней площади эпителиоцитов к площади железы, ядерно-цитоплазматическое соотношение в эпителиоцитах желез при язвенной болезни желудка существенно (в 2 24 раза) отличаются от показателей СОЖ здоровых людей.

Список работ, опубликованных по теме диссертации

- 1. Антигельминтная эозинофилия и ее влияние на ассоциированность заболеваний легких и желудка с хроническим описторхозом /Г.Э. Черногорюк, Ф.Ф. Тетенев, Т.Н. Бодрова, Е.П. Рослякова, И.Д. Беспалова, В.В. Песняк //Актуальные проблемы инфектологии и паразитологии: Материалы Международной конференции. Томск, 2001. C.51.
- 2. Морфометрические показатели эозинофильной инфильтрации слизистой оболочки желудка у больных язвенной болезнью на фоне хронического описторхоза /Г.Э. Черногорюк, Е.П. Рослякова, И.В. Суходоло, Ф.Ф. Тетенев, В.В. Песняк // Актуальные проблемы инфектологии и паразитологии: Материалы Международной конференции. Томск, 2001. С.73.
- 3. Тканевая эозинофилия в общей структуре патоморфоза при эрозивно-язвенных дефектах слизистой оболочки желудка на фоне хронического описторхоза /Г.Э. Черногорюк, И.В. Суходоло, Ф.Ф. Тетенев, Е.П. Рослякова, В.В. Песняк //Сибирский медицинский журнал. − 2001. № 3-4. − С. 51- 54.
- 4. О возможном участии эозинофилов в развитии патологии внутренних органов при хроническом описторхозе /Г.Э. Черногорюк, Е.П. Рослякова, В.В. Песняк, И.Д. Беспалова, О.В. Ахмедзянова //Актуальные аспекты природноочаговых болезней: Материалы межрегиональной научно-практ. конф., посв. 80-летию Омского НИИПИ МЗ РФ. Омск, 2001. С.233-235.
- 5. Динамика плотности эозинофильной инфильтрации слизистой оболочки желудка при язвенной болезни желудка ассоциированной с хроническим описторхозом /Г.Э. Черногорюк, И.В. Суходоло, Ф.Ф. Тетенев, Е.П. Рослякова, В.В. Песняк //Сибирский журнал гастроэнтерологии и гепатологии. 2001. №12,13. С.215-216.
- 6. Субпопуляции эозинофилов при хроническом описторхозе, выделенные в многоступенчатом градиенте плотности /Г.Э. Черногорюк. Е.П. Рослякова, В.В. Песняк, Н.В. Хусаинова, О.В.

- Ахмедзянова //Здоровье и образование в XXI веке: материалы третьей междунар. научн.-практ. конф. М., 2002. С.422.
- 7. Черногорюк Г.Э., Суходоло И.В., Рослякова Е.П. Морфологические аспекты хеликобактерно-эозинофильного синергизма в генезе язвенной болезни желудка и ДПК в сочетании с хроническим описторхозом //Актуальные вопросы экспериментальной и клинической морфологии. Выпуск 2:Сб. научных трудов, посв. 150-летию со дня рожд. А.С. Догеля. Томск, 2002. C.226-228.
- 8. Черногорюк Г.Э., Суходоло И.В., Рослякова Е.П. Хеликобактерноэозинофильный синергизм при язвенной болезни желудка в сочетании с хроническим описторхозом //Клиникоэпидемиологические и этно-экологические проблемы заболеваний органов пищеварения: Материалы 2-й Восточно-Сибирской гастроэнтерологической конференции и 5-й конференции терапевтов республики Хакасия. – Абакан, 2002. – С.75-76.
- 9. Влияние тканевых эозинофилов и Н. pylori на патоморфоз слизистой оболочки при язвенной болезни желудка в сочетании с хроническим описторхозом /Г.Э. Черногорюк, И.В. Суходоло, Е.П. Рослякова, Л.Л. Шубин, Т.А. Евдокимова, В.В. Песняк //Российский журнал гастроэнтерологии, гепатологии, колонопроктологии. − 2002. − Приложение №17. − C.42.
- 10. Роль тканевых эозинофилов в генезе эрозивно-язвенных заболеваний желудка в сочетании с хроническим описторхозом /Г.Э. Черногорюк, И.В. Суходоло, Е.П. Рослякова, В.В. Песняк, Т.А. Евдокимова, Е.Г. Ламброва, Л.Л. Шубин //Сибирский журнал гастроэнтерологии и гепатологии. −2002. №14,15. −С.44-49.
- 11. Эозинофилия при хроническом описторхозе как фактор риска эрозивно-язвенных заболеваний желудка /Г.Э. Черногорюк, И.В. Суходоло, Е.П. Рослякова, Е.Г. Ламброва, Т.А. Евдокимова, В.В. Песняк, Л.Л. Шубин // «Здравоохранение Дальнего Востока». 2002. Приложение №1: Материалы 3-й научно-практ. конфер. с междун. участием, посв. памяти проф. Геллера Л.И.- С.329-339.
- 12. Рослякова Е.П., Суходоло И.В., Черногорюк Г.Э., Ламброва Е.Г. Морфофункциональные свойства внутрисосудистых и экстравазальных эозинофилов слизистой оболочки желудка при язвенной болезни в сочетании с описторхозом //Здоровье и образование в XXI_веке: Материалы четвертой междунар. научн.практ. конф. М., 2002. С. 538.
- 13. Рослякова Е.П., Суходоло И.В., Черногорюк Г.Э., Ламброва Е.Г. Оценка патоморфоза слизистой оболочки желудка при язвенной болезни методом компьютерной морфометрии //Здоровье и образование в XXI веке: Материалы четвертой междунар. научн. практ. конф. М., 2002. С.121-122.
- 14. Компьютерная морфометрия в оценке изменений слизистой оболочки желудка / Г.Э. Черногорюк, Рослякова Е.П., И.В.Суходоло, О.В. Савенкова, И.А. Мандель, Е.Г. Ламброва //«Клинико-эпидемиологические и этно-экологические проблемы заболеваний органов пищеварения»: Материалы 3-ой Восточно-Сибирской

- гастроэнтерологической конференции. Красноярск, 2003. С.121-122.
- 15. Морфофункциональная характеристика эозинофилов в слизистой оболочке желудка при язвенной болезни в сочетании с хроническим описторхозом / Г.Э. Черногорюк, Е.П. Рослякова, И.В. Суходоло, Л.Л Шубин, Е.Г. Ламброва //«Клинико-эпидемиологические и этно-экологические проблемы заболеваний органов пищеварения»: Материалы 3-ой Восточно-Сибирской гастроэнтерологической конференции. Красноярск, 2003. С.122.
- 16. Клеточные отношения в слизистой оболочке желудка при язвенной болезни желудка в сочетании с хроническим описторхозом / Г.Э. Черногорюк, И.В. Суходоло, Е.П. Рослякова, Л.Л. Шубин, В.В. Песняк //«Клинико-эпидемиологические и этно-экологические проблемы заболеваний органов пищеварения»: Материалы 3-ой Восточно-Сибирской гастроэнтерологической конференции. Красноярск, 2003. С. 123.
- 17. Тестовая распознающая система оценки компьютерной морфометрии слизистой оболочки желудка / Янковская А.Е., Черногорюк Г.Э, Рослякова Е.П, Савенкова О.В., Мандель И.А./ Информатизация процессов охраны здоровья населения 2003: Междун. симпозиум, Греция, о. Крит, 2003. С. 100-103.
- 18.Интеллектуальная система для оценки патоморфологических изменений слизистой оболочки желудка по данным компьютерной морфометрии / А.Е. Янковская, Г.Э. Черногорюк, Е.П. Рослякова, О.В. Савенкова, И.А. Мандель //Математические методы в технике и технологиях ММТТ- 2003: Сб. трудов 16 междунар. научн. конфер.- С.- Петербург, 2003. (в печати).